A Phloem Protein Contributes to Aphid Resistance and Heat Stress Tolerance
Blog, Research, Research Blog, The Plant Cell, The Plant Cell: In BriefAphids are highly destructive insect pests—in addition to robbing plants of sugar-rich phloem sap, they carry viruses that can be deadly to the plant. To reach the phloem sap, aphids must penetrate the plasma membrane of sieve elements. Mature sieve elements, which are virtually empty, translocate…
Evidence for Two Distinct Stages in Secondary Cell Wall Formation of Xylem
Blog, Research, Research Blog, The Plant Cell, The Plant Cell: In BriefA hallmark of xylem development is the deposition of secondary cell wall material in specific patterns (reviewed in Patrick et al, 2007). These cell wall deposits structurally reinforce the xylem to withstand negative pressure during water transport and differ in different xylem cell types. While it…
Protoplast Swelling Requires AUXIN BINDING PROTEIN1
Blog, Plant Physiology: On The Inside, Research, Research BlogConvincing molecular and biochemical evidence exists that members of the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX PROTEIN (TIR1/AFB) receptor family are auxin receptors that trigger auxin-induced gene expression and hypocotyl growth through enhanced expression of SMALL AUXIN UP RNA genes.…
Clathrin and Stomatal Function
Blog, Plant Physiology, Plant Physiology: On The Inside, Research, Research BlogVesicle traffic to and from the plasma membrane plays an integral role in regulating protein localization and activity, membrane composition, and cell surface area. Clathrin is a structural protein that forms a lattice-like complex composed of two H chain subunits (CHC1 and CHC2) and two light chain…
Review: Exocyst, exosomes, and autophagy in pollen-stigma interactions ($)
Blog, Plant Science Research Weekly, Research, Research BlogSome plants are able to suppress inbreeding through a system called self-incompatibility, in which “self”-pollen is unable to reach “self” eggs. Self-incompatibility has evolved multiple times and takes several forms. Goring reviews the cellular processes of self-incompatibility that occur in…
Review: The structure-to-function missing link of plasmodesmata: ($)
Blog, Plant Science Research Weekly, Research, Research BlogPlasmodesmata are tiny channels between cells that allow intercellular movement of messages and metabolites as well as pathogens. They are structurally complex and usually have a central strand of endoplasmic-reticulum (the desmotubule) that passes between adjacent cells, connected by spoke-like elements…
Opinion: Plant cytokinesis: Terminology for structures and processes
Blog, Plant Science Research Weekly, Research, Research BlogCell division in plants is a structurally beautiful process that involves striking and dynamic changes in the cytoskeleton, endomembranes, and nucleus. However, as authors Smertenko et al. observe, “Current plant cytokinesis terminology was developed using data generated by fluorescence microscopy…
A pair of papers that redefines the pyrenoid, the eukaryotic CO2-concentrating organelle
Blog, Plant Science Research Weekly, Research, Research BlogPhotosynthesis in aquatic organisms is made difficult due to the low solubility of CO2 in water. Algae such as Chlamydomonas rheinhardtii overcome this limitation through a carbon-concentrating organelle called a pyrenoid. Two papers in Cell redefine our understanding of the pyrenoid structure. Mackinder…
SIEVE ELEMENT-LINING CHAPERONE 1 restricts aphid feeding on Arabidopsis during heat stress ($)
Blog, Plant Science Research Weekly, Research, Research BlogAphids are major pests that damage plants by sucking out phloem sap and as by acting as vectors in transmission of more than 300 different viruses. Kloth et al. used a high-throughput method involving video-tracking of aphid behavior on leaf discs to score 350 Arabidopsis accessions for aphid resistance.…