Entries by Mary Williams

A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation ($)

Circular RNAs (circRNAs) are a recently discovered form of stable, covalently-closed RNA found in all domains of eukaryotic life. The origins and functions of circRNAs have been under intensive investigation. Often, circRNAs consist of one or more exons, often corresponding to skipped exons from genes that are alternatively spliced (AS), but the relationship between circRNA […]

Non-random domain organization of the Arabidopsis genome at the nuclear periphery

Chromatin in the nucleus is not randomly arranged. In animal cells, studies have identified an enrichment for non-genic or silenced DNA near the nuclear envelope, as demonstrated by its association with the nuclear lamin proteins. Plants don’t have proteins like animal lamins, but a few envelope-associated proteins have been identified. Bi et al. used a […]

Review: Tale of Huanglongbing disease pyramid in the context of the citrus microbiome ($)

Huanglongbing (HLB or Citrus Greening Disease) has caused enormous economic losses in major citrus production areas, including Florida. The Huanglongbing disease pyramid consists of the bacteria Liberibacters, citrus psyllid vectors (insects), citrus hosts, and the environment in which they all exist.  The authors complement existing reviews of Liberibacters and citrus plant interactions by reviewing the […]

Update: The multiple signals that control tuber formation

Potato is an important food crop, but unlike most of the other major foods, it is a tuber, not a seed. Classic studies showed that there is a mobile, photoperiod-induced signal that moves from the shoot to the stolen tip (an underground, stem-like structure) to initiate tuberization. Experimental studies point to three factors as key […]

Review: The unfolded protein response in development, defense, and stress

The unfolded protein response (UPR) is a eukaryote-wide signalling pathway in which unfolded proteins in the ER (often caused by abiotic stress) initiate signals transduced to the nucleus that lead to the expression of stress-response genes. Bao and Howell review the UPR in plants. They describe two ways that signals can move from the ER […]

Review: Rubisco activases: AAA+ chaperones adapted to enzyme repair

Rubisco, the fundamental enzyme required for photosynthetic carbon fixation, is susceptible to inactivation by the inhibitory binding of various metabolites. Rubisco activases (Rca’s) are enzymes that remodel Rubisco and facilitate the elimination of the inhibitor. All photosynthetic organisms have Rubisco activases that share a AAA+ domain. Bhat et al. review the structure and function of […]

Update: Diurnal variation in gas exchange: the balance between carbon fixation and water loss

Stomatal control of transpiration is critical for maintaining important processes, such as plant water status, leaf temperature, as well as permitting sufficient CO2 diffusion into the leaf to maintain photosynthetic rates (A). Stomatal conductance (gs) often closely correlates with A and is thought to control the balance between water loss and carbon gain. It has […]

Recognizing featured Plant Cell first authors, February 2017

Masanori Izumi, featured first author of Entire Photodamaged Chloroplasts Are Transported to the Central Vacuole by Autophagy Current Position: Assistant Professor, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University. Education: Ph.D. (2012), Graduate School of Agricultural Sciences, Tohoku University, Japan. Non-scientific Interests: Playing tennis, Travel to Japanese hot springs. When I was an undergraduate student, […]

What We’re Reading: April 14

Note: Read Why We’re Writing “What We’re Reading” Review: Ion transport at the vacuole during stomatal movement Gas exchange and transpiration are regulated by the stomatal aperture, which is itself regulated by the changes in volume of the guard cells that overlie the stomatal pore. When triggered to open, solutes such as K+ and Cl– […]