Entries by Mary Williams

Review: Receptor kinases in plant pathogen interactions: More than pattern recognition

Zhou et al. review the contributions of Receptor-Like Kinases (RLKs) and Receptor-Like Proteins (RLPs) as Pattern Recognition Receptors (PRRs) that contribute to the recognition of pathogens, as well as the contributions of receptor-like cytoplasmic kinases (RLCKs). The authors summarize recent studies that show how complex formation by PRRs affects their activities, and how PRR complexes […]

Temperature induced remodeling of the photosynthetic machinery tunes photosynthesis in a thermophyllic red alga

The red alga Cyanidioschyzon merolae is notable for several reasons: it is an early-branching red alga, it has one of the smallest genomes and simplest cellular structures of photosynthetic eukaryotes, and its photosynthetic machinery is intermediate between cyanobacteria and green algae. Furthermore, it thrives at high temperatures. Nikolova et al. examined how acclimation to lower […]

IRREGULAR POLLEN EXINE1 Is a novel factor in anther cuticle and pollen exine formation

Chen et al. identified a novel male-sterile Zea mays mutant, named ipe1.  Mutant pollen grains show defective development of the tapetum and pollen exine (outer surface), causing microspore abortion.  In addition, ipe1 anthers are smooth instead of reticulate, suggesting defects in anther cuticle formation.  IPE1 expression is specific to the tapetum and developmentally restricted to […]

Dual role of the histone variant H2A.Z in regulation of stress-response genes

Histones are protein complexes around which genomic DNA is wrapped; post-translational modifications to histone proteins and alterations of histone protein composition affect transcription. H2A.Z is a widely conserved variant form of histone H2A that has been implicated in various forms of transcriptional regulation. Sura et al. examine the role of H2A.Z in the Arabidopsis stress […]

Method: Microphenotron, a miniaturized robotic phenotyping platform

High-throughput screening greatly extends the number of individuals that can be screened, so is particularly crucial for genetic or chemical genetic approaches.  Burrell et al. report on a miniaturized robotic phenotyping platform, “Microphenotron” designed for chemical genetic screening. Seeds are planted in phytostrips, small tubes with flat sides for improved imaging. This platform allows the […]

Review: Using mustard genomes to explore the genetic basis of evolutionary change ($)

Brassicaceae is one of the largest angiosperm families and provides many opportunities for studies of evolution. Of course, its most famous species, Arabidopsis thaliana is an important resource, but Brassicaceae also includes the very interesting Brassica crops (cabbage, turnip) that demonstrate the power of selection. Nikolov and Tsiantis provide a thorough overview of this plant […]

Review: Plant sex determination

Most angiosperms are hermaphrodites and produce flowers that have both male (stamens / sperm) and female (carpels / egg) parts. Pannell reviews the developmental and genetic programs that lead to these “perfect” flowers, as well as those that underlie reproductive structure development in dioecious and monoecious species. His analysis further extends to bryophytes and vascular […]

Review: Methods of cell-specific hormone analysis ($)

Plant hormones are active at very small quantities and often act differently in different cell types. Various methods, primarily involving mass spectrometry and sensors, have been developed to identify and quantify hormones with cellular-level precision. Novák et al. review these methods and discuss their strengths and limitations, as well as future perspectives in “hormonomics”. Annu. […]