Update: Engineering of metabolic pathways using synthetic enzyme complexes
Blog, Plant Physiology, Plant Physiology: UpdatesBy Nicholas Smirnoff, University of Exeter. This article is part of the forthcoming Synthetic Biology focus issue.
Plants provide a source of enzymes for metabolic engineering to produce valuable or useful products in micro-organisms or can themselves be engineered (Andre et al., 2016; Vickery et…
How Peroxisomes Modulate Chloroplast Activity in a Microalga
Research, The Plant Cell, The Plant Cell: In a NutshellBackground: Chloroplasts are the major powerhouse of plant and algal cells, where photosynthesis—the conversion of carbon dioxide into organic compounds using sunlight energy—occurs. Chloroplasts are also where important cell components (such as membrane lipids and pigments) and energy-rich compounds…
Taking the TOC/TIC path to the chloroplast
Research, The Plant Cell, The Plant Cell: In a NutshellRichardson et al. explore the molecular topology of the chloroplast transit peptide and its nucleotide-dependent movement within the chloroplast protein import channel. Plant Cell https://doi.org/10.1105/tpc.18.00172.
By Lynn GL Richardson and Danny J Schnell
Background: Chloroplasts, the site…
Setting and Diffusing the Cyanide Bomb in Plant Defense
Plant Physiology, Plant Physiology: News and ViewsHydrogen cyanide (HCN) is a potent inhibitor of cytochrome c oxidase, a conserved component of the respiratory electron transport chain in all aerobic life. Thus, HCN is well suited to serve as a broad-spectrum chemical defense, and indeed it plays such a role in many interactions between plants and…
Review: Changing form and function through carotenoids and synthetic biology (Plant Physiol)
Plant Science Research WeeklyPlants produce hundreds of carotenoids with functions ranging from photoprotection to signalling, and with important roles in human health as well. Wurtzel describes opportunities arising from applying the tools of synthetic biology to carotenoids. The regulation of carotenoid biosynthesis is complex,…
Inhibition of TOR, Nitrogen Assimilation, and Amino Acid Biosynthesis: Lessons from Chlamydomonas
The Plant Cell, The Plant Cell: In BriefTo survive, organisms must sense their nutritional status (including nutrient availability and quality) and regulate their growth and metabolism accordingly. In plants, animals, and fungi, the Target of Rapamycin (TOR) kinase regulates metabolism, nutrient sensing, and growth (reviewed in Dobrenel et…
Studies have found that key enzymes of plant oxalate metabolism affect corn nutrition quality
Blog, The Plant Cell, The Plant Cell: News(From a press release written in Chinese - original here)
On September 10th , The Plant Cell published a research paper entitled Maize Oxalyl-CoA Decarboxylase1 Degrades Oxalate and Affects the Seed Metabolome and Nutritional Quality by the Wu Yongrui Research Group of the Institute of Plant and Plant…
The spermine synthase OsSPMS1 regulates seed germination, grain size, and yield (Plant Physiol)
Plant Science Research WeeklyPolyamines including spermine and spermidine are present in all eukaryotes and have diverse roles. In plants they have been implicated in responses ranging from abiotic and biotic stresses to grain filling. Tao et al. examined the function of OsPMS1, encoding a spermine synthase, through genetic methods…
Molecular events marking the onset of berry ripening in grapevine (Plant Physiol)
Plant Science Research WeeklyDo you know the difference between a wine made from Pinot noir grapes and one made from Cabernet Sauvignon grapes? Most people can taste a difference, but to really understand the wines you might want to go a bit deeper through metabolomic and transcriptomic approaches, as done by Fasoli et al. (in a…