Recent Posts

Review: Root development and symbiosis: an epigenetic perspective

Roots do not grow in isolation but occupy a space inhabited by a variety of organisms. With certain fungi and bacteria, they form partnerships or symbiotic relationships that increase the plant’s nutrient uptake and assimilation. While the knowledge on the genetic programs required to establish these…

Review: SynBio takes on roots and the rhizosphere

This is an excellent introduction to how synthetic biology can be used to program plants for climate resilience by engineering them to respond predictably and in ways beyond those that evolution has explored, through the use of controllable synthetic gene circuits. Ragland et al. describe how precise…

Uncovering the brassinosteroid gene regulatory networks in Arabidopsis root using single-cell RNA sequencing

Brassinosteroid hormones regulate root growth and development by controlling cell division and elongation. However, it has been unclear why and how root cells with different identities and developmental stages respond to brassinosteroids differently. Nolan et al. used cutting-edge single-cell RNA sequencing…

SYO81 regulates root meristem activity via ROS signaling

Lately, reactive oxygen species (ROS) have been recognized as signaling molecules that regulate plant cellular proliferation and differentiation in many areas of the plant, including root tips. Chloroplasts, peroxisomes, and mitochondria are the main cellular compartments for ROS generation in cells.…

Genome-wide dissection of maize root system architecture

Root system architecture (RSA) is a complex trait that directly or indirectly influences most aspects of plant survival, largely through its effects on nutrient and water uptake as well as support and anchoring. Its hidden nature has made it harder to study than the architecture of the shoot, and led…