Recent Posts

Nanoscale movements of cellulose microfibrils in primary cell walls ($)

/
Cell walls are complex mixtures of cellulose microfibrils, proteins and other materials. Their mechanical properties can be measured and modeled, but it is not always simple to translate these measurements to changes at the molecular level. Zhang et al. used atomic force microscopy to provide an unprecedented…

Identification of a unique ZIP transporter involved in zinc uptake via the arbuscular mycorrhizal fungal pathway (bioRxiv)

Last week, PSRW presented two review papers regarding host plant interactions with microbial populations, particularly for plant nutrient intake. Watt-Williams et al. utilize such knowledge for their paper, performing an RNA-seq dataset to identify a novel zinc transporter in Medicago truncatula. Zinc…

Calcium dynamics during trap closure visualized in transgenic Venus flytrap (Nature Plants)

For centuries, carnivorous plants and the mechanisms they use to capture prey have been enigmas. While some clarity regarding the molecular mechanisms is beginning to emerge, Suda and colleagues have uncovered a vital role for calcium (Ca2+) signals in trap closure in Venus flytrap. The researchers…

Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions (Science)

Plants produce more root hairs (epidermal projections) in response to low soil phosphate and the detailed mechanism of this developmental response remains elusive. TARGET OF MONOPTEROS 5 (TMO5) and LONESOME HIGHWAY (LHW) are vascular specific bHLH proteins that work as a heterodimer to activate the rate…

Review. Plant nutrition for human nutrition: Hints from rice research and future perspectives

Among all the mineral elements transported from the soil to the plant, cadmium (Cd) and arsenic (As)- are toxic for all organisms whereas 13 micronutrients, including iron (Fe) and zinc (Zn), are beneficial for both human and plant nutrition. Ideally, food crops should accumulate fewer soil contaminants…

Review: Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency (Plant Physiol.)

Continuous agricultural production is required to feed the growing population, and fertilizers are important factors determining the productivity of today’s high-input agriculture. Fertilizers increase the cost of production, some are produced from finite sources, and some create environmental concern,…

Nutrient dose-responsive transcriptome changes driven by Michaelis–Menten kinetics underlie plant growth rates (PNAS)

Plants can increase their growth and biomass proportionately to an increase in nutrient dose and, conversely, their growth is limited by limiting nutrients. In this study, Swift et al. explored the molecular underpinnings of the nutrient dose-response phenomenon. The authors first show that nitrogen-dose…

A molecular toolkit for screening elite rhizobia (PNAS)

N2-fixing rhizobia bacteria are able to establish symbiotic interactions with legumes in specialized organs called root nodules. Identifying elite rhizobia that are both competitive for nodule occupancy and effective in N2 fixation in agricultural environments is crucial for maximizing the yield of legumes.…

A regulatory module for survival on low potassium (Nature Plants)

Potassium ions (K+) play a variety of important roles in plant physiology and are maintained at a high concentration in the cytosol relative to the available K+ in the environment. Potassium may accumulate to an even higher concentration in the vacuole, where it helps to regulate turgor pressure. During…

Review. Signalling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species (J. Exp. Bot.)

Nitrogen (N) is one of the seventeen essential nutrients for a plant to complete its life cycle and is one of the most important determinants of productivity of various crops globally. Nitrate (NO3‑) and ammonium (NH4+) are the major plant-available forms of N. The spatiotemporal heterogeneity of N…