Recognizing Plant Physiology author Mei Zheng

Mei Zheng, co-first author of Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat

Current Position: Postdoctoral researcher, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China

Education: Ph. D, China Agricultural University.

Non-scientific Interests: Music

Brief bio: In 2013, I joined the research group of Wheat Genetics and Genomics Center in China Agricultural University and started my postgraduate course study. The main research work was to reveal the molecular basis of adaptive advantage in allopolyploidy wheat. We found that the histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Salinity induced TaHAG1 expression was associated with tolerance variation in polyploidy wheat. Overexpression, silencing and CRISPR-mediated knockout of TaHAG1 validate the role of TaHAG1 in salinity tolerance of wheat. TaHAG1 contribute to salt tolerance by modulating ROS production and signal specificity. Moreover, TaHAG1 directly targets a subset of genes that are responsible for hydrogen peroxide production and enrichment of TaHAG1 triggers increased H3 acetylation and transcriptional upregulation of these loci under salt stress. In addition, we found the salinity induced TaHAG1-mediated ROS production pathway is involved in salt tolerance difference of wheat accessions with varying ploidy. Our findings provide insight into the molecular mechanism of how epigenetic regulatory factor facilitates adaptability of polyploidy wheat and highlights this epigenetic modulator as a strategy for salt tolerance breeding in bread wheat.

 

姓名:郑美

现在职位:北京市农林科学院蔬菜研究中心博士后

教育经历:中国农业大学博士研究生

兴趣爱好:音乐

个人简介:2013年9月加入中国农业大学小麦研究中心开始学习,导师是孙其信老师和胡兆荣老师。研究生期间主要的研究课题为多倍体小麦耐盐性优势的分子机制研究。普通小麦是典型的异源六倍体,在耐盐性方面较四倍体小麦具有明显的优势,但关于其形成的分子机制还不清楚。我们对人工合成六倍体小麦及其亲本以及不同倍性小麦天然材料的耐盐性进行了比较分析,发现与四倍体小麦相比,六倍体小麦的耐盐性显著增强。表达分析发现组蛋白乙酰转移酶基因TaHAG1在小麦盐胁迫后上调表达,且在不同倍性小麦中,盐胁迫后TaHAG1基因的上调表达倍数与其耐盐性显著正相关。小麦中TaHAG1超表达株系耐盐性显著提高,而RNAi和敲除株系耐盐性显著降低,说明TaHAG1基因与小麦耐盐性有重要关系。转录组分析发现TaHAG1能够激活ROS合成相关基因;在盐胁迫条件下,TaHAG1超表达株系和RNAi株系分别通过增强和降低ROS的合成进而影响钠离子的积累,暗示TaHAG1通过ROS合成代谢途径参与小麦耐盐性调控。进一步研究发现盐胁迫条件下TaHAG1富集在Rbohs基因启动子区域并通过组蛋白乙酰化修饰激活其表达,这种调控途径在多倍体小麦耐盐性优势中起了重要作用。该研究揭示了多倍体小麦耐盐性优势的表观遗传调控机制,这一工作为解析多倍体小麦适应性优势分子调控网络提供了新的线索。