Recent Posts

Machine learning enables high-throughput phenotyping for analyses of the genetic architecture of bulliform cell patterning in maize (G3)

Bulliform cells lie in rows along the upper (adaxial) surface of the maize leaf, and through changes in volume contribute to leaf-rolling, which is a response to water deficit. Several mutants have been identified that affect bulliform cell formation and function, but as yet their occurance in natural…

Review: Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation (Plant Cell)

Legumes are important crops because they are protein-rich, as a consequence of symbiotic nitrogen fixation (SNF). In the past 20 years, through forward and reverse genetics more than 200 genes have been identified that are involved in this process, from recognition through nodule differentiation and…

VP1 regulates intra-kernel protein reallocation (Plant Cell)

Maize kernels have a triploid endosperm and a diploid embryo. Storage reserves move from the endosperm to the embryo as it grows. Mutants have been identified with abnormal embryos but normal endosperms, although usually a defective endosperm prevents normal embryo formation. Here Zheng and Li et al.…

NEEDLE1 encodes a mitochondria localized ATP-dependent metalloprotease required for thermotolerant maize growth ($) (PNAS)

Previously, the needle1 (ndl1) maize mutant was identified as showing a variable phenotype mainly affecting the tassel. Here, Liu et al. showed that this variability arises due to its temperature sensitivity, with strongest effects at warmer temperatures. In some cases, the plants arrest before reaching…

KonMari for Maize - keeping genomes clutter-free during selfing ($) (Nature Plants)

Just like years of hoarding can end up cluttering our homes, years of self-fertilization or selfing can also accumulate harmful mutations in plant genomes. By removing such harmful alleles from the genome (i.e., purging) plants can reduce the mutational load and prevent fitness loss due to selfing. Roessler…

Review: Revolutions in agriculture chart a course for targeted breeding of old and new crops ($) (Science)

A few traits are associated with domestication across many species. Eshed and Lippman provide an overview of the changes to plant stature and flowering time that have been repeatedly selected by our ancestors. By comparing the molecular underpinnings of these traits across crops, it becomes clear that…

Natural selection on the Arabidopsis thaliana genome in present and future climates (Nature)

The rapidly changing climate will have profound effects on Earth’s ecosystems, but as yet it is difficult to determine exactly what these effects will be. Exposito-Alonso et al. have set up a large experiment to try to identify how a population’s genetic diversity will enable it to survive a future…

Large-effect flowering time mutations reveal conditionally adaptive paths through fitness landscapes in Arabidopsis thaliana (PNAS)

We have a tendency to think of genes carrying mutations as having a negative impact on fitness, which raises the question of why they might persist in a population. Taylor et al. tested whether large-effect mutations that affect flowering time might not be detrimental in all conditions, by comparing…

Update. GMO-free RNAi: exogenous application of RNA molecules in plants (Plant Physiol)

Criticism of transgenic plants and GMOs motivates research into effective GMO-free RNA delivery methods. In this review, Dalakouras et al. discuss different strategies for exogenous application of RNA molecules (dsRNAs, siRNAs) into plants to trigger RNA interference (RNAi) against various targets, such…