Recognizing Plant Physiology authors: Shiyi Xie

Shiyi Xie, first author of A missense mutation in a large subunit of ribonucleotide reductase confers temperature-gated tassel formation

Current Position: Unemployed

Education: China Agricultural University  Crop Genetics and Breeding, Doctor of Science in Agriculture; Hunan Agricultural University  Agronomy, Bachelor of Science in Agriculture

Non-scientific Interests: fishing, NBA

Brief bio: From September 2013 to August 2020, I was studying for a doctoral degree in the laboratory of Professor Weiwei Jin at China Agricultural University. During this period, one of my research topics was carried out with thermosensitive vanishing tassel1-R (tvt1-R) mutants as materials. Positional cloning, allelism test, and complementation tests demonstrated that a G-to-A mutation causing a Arg277-to-His277 substitution in ZmRNRL1, a ribonucleotide reductase large subunit, confers the tvt1-R mutant phenotype. By expression, yeast two-hybrid, RNA-seq, and flow cytometric analyses, we found that ZmRNRL1-tvt1-R failed to interact with all three ribonucleotide reductase small subunits (ZmRNRS1, ZmRNRS2, and ZmRNRS3) at higher temperatures (34℃) due to the Arg277-to-His277 substitution, which could impede RNR holoenzyme formation and decrease the deoxyribonucleoside triphosphate supply, thereby affecting DNA replication and cell proliferation in the shoot apical meristem (SAM). Our study reveals a novel mechanism of temperature-gated tassel formation in maize and provides insight into the role of nucleotide homeostasis in SAM maintenance.





中国农业大学  作物遗传育种  农学博士

湖南农业大学  农学  农学学士


简介:我于2013年09月至2020年08月在中国农业大学金危危教授实验室进行硕博连读。期间,我的课题之一是以温度敏感无雄穗突变体tvt1-R为材料开展。利用图位克隆、等位测验和互补测验,我们证明核糖核酸还原酶大亚基基因ZmRNRL1上一个导致其编码蛋白第277位精氨酸(Arg277; CGU)替换为组氨酸(His277; CAU)的G-A点突变赋予了tvt1-R突变体的温敏无雄穗表型。通过基因表达、酵母双杂、RNA-seq及流式细胞等分析,我们提出了一个限制性高温下tvt1-R突变体雄穗缺失的模型:在较高的温度(34℃)下,ZmRNRL1-tvt1-R的Arg277-His277替换影响了它与三个核糖核酸还原酶小亚基(ZmRNRS1、ZmRNRS2和ZmRNRS3)的互作,从而影响核糖核酸还原酶全酶的形成和脱氧核糖核苷三磷酸的供应,进而影响顶端分生组织(SAM)的DNA复制和细胞增殖。这一研究为核苷酸稳态在SAM维持中的作用提供了新见解。