Qiuling Wang: The Plant Cell First Author
Qiuling Wang, co-first author of “Type one protein phosphatase regulates fixed-carbon starvation-induced autophagy in Arabidopsis”
Current Position: Post-doctoral Research Fellow, School of Life Sciences, Lanzhou University, Lan Zhou, China
Education: Ph.D by cooperation of Institute of Genetics and Developmental Biology Chinese Academy of Sciences and Lan Zhou University
Non-scientific Interests: Calligraphy and Writing
Brief bio: I completed my Ph.D by cooperation of Institute of Genetics and Developmental Biology Chinese Academy of Sciences and Lan Zhou University. Then I joined Dr. Suiwen Hou’s lab in Lanzhou University for postdoctoral research. I was mainly focused on the role of type I protein phosphatase (TOPP) in plant growth,development, and stress response during my PhD. I first found that the dominant-negative effect mutant topp4-1, septuple mutant, and octuple mutant of TOPP exhibited significantly reduced tolerance to fixed-carbon starvation due to compromised autophagy activity. Analysis showed that ATG13a, a key component in the regulation of autophagy initiation, is the substrate of TOPP, and eighteen phosphorylation sites of ATG13a was identified. Dephosphorylation of ATG13a at these 18 sites significantly promoted autophagy, increased the plant tolerance to fixed-C starvation, and facilitated ATG1a-ATG13a complex formation. The study reveals the crucial role of TOPP in regulating autophagy and the mechanism of ATG13 phosphorylation in regulating autophagy in Arabidopsis.
姓名:王秋玲
发表论文:Type one protein phosphatase regulates fixed-carbon starvation-induced autophagy in Arabidopsis
目前职位:兰州大学,博士后
教育背景:中国科学院遗传与发育生物学研究所,兰州大学,联合培养博士
爱好:书法,写作
个人简介:我在中国科学院遗传与发育生物学研究所和兰州大学合作完成了我的博士学位。毕业后,加入兰州大学侯岁稳教授课题组进行博士后课题研究。博士期间主要致力于植物I型蛋白磷酸酶(TOPP)在植物生长发育、逆境响应过程中的作用研究。在研究中我发现TOPP的一个显性负效应突变体topp4-1,七重突变体以及八重突变体均在缺碳处理后早衰,并且导致这一现象的原因是自噬活性受到抑制。我通过筛选互作蛋白发现调控自噬起始的一个关键组分ATG13a是TOPP的底物,并鉴定到ATG13a的十八个磷酸化位点。ATG13a去磷酸化能激活自噬从而延缓植物在缺碳处理后的早衰,并且其去磷酸化直接促进ATG1a-ATG13a复合体的形成。研究揭示了TOPP在调控植物自噬中的重要作用,解析了拟南芥ATG13磷酸化调控自噬的机制。