Entries by Thomas Depaepe

Metabolites through the looking glass with CEST MRI

Non-invasive imaging technologies like computed tomography and magnetic resonance imaging (MRI) have revolutionized medicine by improving diagnostics and guiding treatment. Due to its versatility, MRI also holds potential for plant sciences, where it can be used to visualize and quantify metabolites within organs, tissues, and cells. However, challenges specific to plant tissues have hindered its […]

Crowd control by DCP5 – a new cytoplasmic osmosensor

Osmosis, driving water uptake and transport, is crucial for plants. It supports nutrient uptake, turgidity, and overall plant health. In hyperosmotic conditions, caused by drought, salinity, and cold stress, water loss triggers osmotic responses. A key question is: what sensors detect osmotic changes? While traditional sensors are ligand-receptor based or stretch-activated, internal cytoplasmic sensors are […]

PCMD: an interactive library for comparative metabolomics studies

Albert Einstein once said, “The only thing that you absolutely have to know is the location of the library.” Libraries house vast troves of information for readers to explore, analyze, and use. With the exponential increase in data, libraries have also evolved into digital databases and online platforms. For example, large-scale omics studies yield tremendous […]

Review: Genetically modified crops and their multifaceted impact on the environment

The development of genetically modified (GM) crops aims to improve agricultural yields in the field. However, their incorporation into agricultural systems is complex, as regulations and acceptance vary globally. While some countries embrace GM crops with herbicide and insect resistance traits, others remain cautious due to concerns about environmental and societal impacts. A recent review […]

Single cell transcriptomics aids gene discovery of complex natural product biosynthesis

From an ancient Greek cure-all to a modern treatment for mild depression, Hypericum perforatum (St. John’s wort) is a fascinating weed. Its leaves and flowers produce hyperforin, a metabolite derived from the isoprenoid pathway, which acts as a serotonin reuptake inhibitor. Despite partial genome and transcriptome data, the later steps in its biosynthesis pathway remain […]

New kid on the plant block: Single-cell proteomics

While single-cell omics technologies, particularly transcriptomics, are already becoming widely adopted in plant science, quantifying proteins at single cell resolution is less established. Fortunately, important technological strides have been made that improve sample preparation, separation techniques, and overall sensitivity and resolution to make single cell proteomics (SCP) possible. Montes et al. have recently developed a […]

Plant rheostat BAP2 determines the direction of ER stress tolerance mechanisms

When protein folding is disrupted by abiotic or biotic stresses, cells can experience ER stress. Sensors like inositol-requiring enzyme 1 (IRE1) detect this stress, triggering the unfolded protein response (UPR) pathway. UPR signaling activates genes that restore proteostasis and maintain cellular vitality. However, under chronic ER stress, a pro-death strategy is initiated, leading to programmed […]