Plant Domestication

Introductory group project
Xiang Li, Samantha Snodgrass, Nikolaos Ntelkis and Haley Carter
1) Domesticated plants and wild plants
2) Process of artificial selection underlying phenotypic differences
3) Comparisons between natural selection and artificial selection
4) Study of plant domestication
1) Domesticated plants and wild plants
2) Process of artificial selection underlying phenotypic differences
3) Comparisons between natural selection and artificial selection
4) Study of plant domestication
The plants we eat - domesticated plants

More examples?

Corn
The close relatives of the domesticated plants - wild plants

Where the corn comes from?

Who is the ancestor of the corn?

Wild plants vs domesticated plants

Differences between wild and domesticated plants?

What differences we observe?

- Larger fruits
- More fruits
- Tighter architecture

Tomato (Chaudhary, 2013)

Rice (Gross, 2012)

Maize (Credit: John Doebley)

Rice (Hua, 2015)
What other differences we can expect?

- Less toxic, better taste
- Easier to grow (seed dormancy)
- Widely grow in different areas (flowering time)
- Easier to collect (seed shattering)
In summary

More beneficial traits (to human) are found in the domesticated plants.

People selected these traits (purposely or unpurposely).

How this works in the genetic perspective?

(Giovannoni, 2018)
1) Domesticated plants and wild plants
2) Process of artificial selection underlying phenotypic differences
3) Comparisons between natural selection and artificial selection
4) Study of plant domestication
Selection Game

You will be in charge of a population, represented by tokens

Within this population are the Red (R) and Yellow (Y) alleles that control the color of the token

- The alleles R and Y represent the genotype
- The token colors represent the phenotype
About the Game

Goal: see how the frequency of each allele and token color changes under different scenarios

Think about:

1. How many R and Y alleles (genetics) are there in the starting and ending populations?
2. What is the proportion of colored tokens (phenotypes) in the starting and ending populations?
Playing the Game

- Bank of tokens for 4 different groups
 - Red (RR)
 - Yellow (YY)
 - Orange (RY)
 - Pink (P) [this is a mutant allele used in mutation scenarios]
- Random number generator or a 4 sided die
 - https://www.google.com/search?q=random+number
- Instruction handout
- Class scorecard to record outcomes of each final population in each scenario
Playing the Game

Four scenarios

- No selection
- Selection for a standing variant
- Selection against a mutation
- Domestication of P
<table>
<thead>
<tr>
<th>Student/Group Name</th>
<th>Basic Game</th>
<th>Select for Red</th>
<th>Select against mutation</th>
<th>Domesticate P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># R # Y</td>
<td># Red</td>
<td># R # Y</td>
<td># Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yellow</td>
<td></td>
<td>Orange</td>
</tr>
</tbody>
</table>
Questions you can bear in mind

No selection
● How has the population changed?
● Are there more individuals of 1 group than another?
● How different/similar is it to the starting population?

Selection for a standing variant
● How did the population change?
● Why might we see this happen in a wild population (the change of allele/trait frequencies)?

Selection against a mutation
● How did the Pink (P) group do?
● How is this similar or different from previous rounds of the game?

Domestication of P
● How did the Pink group do in this setting?
● How is it similar or different from other versions of the game?
● How is this similar to what happens in domesticated species versus their wild counterparts?
1) Domesticated plants and wild plants
2) Process of artificial selection underlying phenotypic differences
3) Comparisons between natural selection and artificial selection
4) Study of plant domestication
Is domestication the only thing that can change genes and phenotypes?

NO

Natural selection
Natural Selection

How natural selection contributes genetic and phenotypic traits to the population?

- Traits affecting survival to reproduction
- Traits affecting reproductive success
Traits affecting survival to reproduction

Traits that allow plants to survive persist in the population while traits that impede survival are bred out over generations.

Natural conditions such as drought, level of sunlight, predation by herbivores, etc.

Affect which plants survive to reproduce
Traits affecting reproductive success

Traits that allow plants to create more offspring:

- Making more flowers
- Attracting pollinators
- Releasing seeds

Image credit: The Seed Site
Artificial selection vs natural selection

Artificial selection follows predictable patterns genetically and phenotypically
- people are usually selecting for the same specific traits

Natural selection does not have as many predictable patterns because there are so many more environmental factors involved
- the same trait can be advantageous or disadvantageous depending on the environmental context

In domestication: clear traits and experimental populations makes studying the genes easier and helps connect genes to traits
1) Domesticated plants and wild plants
2) Process of artificial selection underlying phenotypic differences
3) Comparisons between natural selection and artificial selection
4) Study of plant domestication
What real genes are involved in domestication?

The gene controls fruit size

The gene controls general growth habit

(Zsogon, 2018)
Six loci important for key domestication traits in tomato

- General growth habit (SELF-PRUNING)
- Fruit shape (OVATE)
- Fruit size (FASCIATED and FRUIT WEIGHT 2.2)
- Fruit number (MULTIFLORA)
- Nutritional quality (LYCOPENE BETA CYCLASE)

How could some of these genes be adaptive or maladaptive in a natural context?

(Zsogon, 2018)
Potential of using these genes

Rapid improvement of domestication traits in an orphan crop (groundcherry) by genome editing.

Orphan crops, often have undesirable characteristics resembling wild species.

Improve the genes that control plant architecture, flower reproduction and fruit size.

(Lemmon, 2018)
Thanks for your attentions