Plantae Seminar: Plants, Rumors and Imaging Spectroscopy

Register in advance to attend this live webinar

 

About This Seminar

Most supervised machine learning algorithms assume that each training data point is paired with an accurate training label (for classification) or value (for regression). However, obtaining accurate training label information is often time-consuming and expensive, making it infeasible for large data sets, or may simply be impossible to provide.  Furthermore, human annotators may be inconsistent when labeling a data set, providing inherently imprecise label information. Given this, in many applications, one has access only to inaccurately labeled training data.  For example, consider the case of single-pixel or sub-pixel target detection within remotely sensed imagery, often only GPS coordinates for targets of interest are available with an accuracy ranging across several pixels.  Thus, the specific pixels that correspond to target are unknown (even with the GPS ground-truth information).  Training an accurate classifier or learning a representative target signature from this sort of imprecisely labeled training data is extremely difficult in practice.  In this example, accurately labeled training is unavailable and an approach that can learn from uncertain training labels, such as Multiple Instance Learning (MIL) methods, is required.  Once we learn to spot it, we find this challenge of needing to learn from weakly labeled data or uncertain training labels plagues many potential machine learning and pattern recognition problems in a wide range of real-world applications.  

MIL is a variation on supervised learning for problems with imprecise label information. In particular, training data is segmented into positively and negatively labeled bags.  In the case of target characterization, the multiple instance learning problem requires that a positive bag must contain at least one instance from the target class and negatively labeled bags are composed of entirely non-target data. Given training data of this form, the overall goal can be to predict either unknown instance-level or unknown bag-level labels on test data. MIL methods are effective for developing classifiers for cases where accurate single-instance-level labeled training data is unavailable.  Since the introduction of the MIL framework, many methods have been proposed and developed in the literature. The majority of MIL approaches focus on learning a classification decision boundary to distinguish between positive and negative instances/bags from the ambiguously labeled data.  Although these approaches are effective at training classifiers given imprecise labels, they generally do not provide an intuitive description or representative target concept that characterizes the salient and discriminative features of the target class.  The Multiple Instance Adaptive Cosine Estimator (MI-ACE) approach is one of the few MIL methods that can estimate a discriminative target concept.  In this presentation, an introduction to hyperspectral imagery, sub-pixel target detection, machine learning and, specifically, multiple instance learning concepts, and the MI-ACE algorithm will be provided.

Participants will have: 

  • Introduction to Hyperspectral Image Analysis and Sub-pixel Target Detection      
  • Introduction to Basic Machine Learning Concepts and to Multiple Instance Learning Concepts
  • Introduction to Algorithmic Target Detection

Speaker: Dr. Alina Zare, Associate Professor, Electrical and Computer Engineering, University of Florida

Alina Zare conducts research and teaches in the area of pattern recognition and machine learning in the Electrical and Computer Engineering Department at the University of Florida. Dr. Zaredevelops algorithms for automated analysis of large data sets from a variety of (usually, non-visual) sensors including multi- and hyperspectral imagery, LiDAR, ground penetrating radar, mini-rhizotron imagery, synthetic aperture sonar, wide band electromagnetic induction data, synthetic aperture radar, and others.  Her current research work includes applications in plant phenotyping, plot root imaging and analysis, forestry, remote sensing, landmine and explosive hazard detection, sub-pixel target characterization and detection, and underwater scene understanding.

Seminar date and time: Monday, December 4th, 11 AM EST

Register in advance to attend this live webinar